

API​ Changelog

Version Notes

1.00 First Release.
1.01 (05/04/18) Addition of Device Type to response /api/data/201/[x]

1.02 (13/04/18)
Amendment of API glossary with revised descriptions of video input, video output, audio input & audio
output. Addition of identify API.

1.03 (18/04/18) Addition of first boot status to /api/data/100
1.04 (23/04/18) Addition of Zone switching, volume and mute API's
1.05 (30/04/18) Addition of example responses added, addition data added to responses for /data/100 & /data/101
1.06 (24/07/18) IR port ID and addressing table for MHUB systems pg. 40
1.07 (01/11/18) Updated Supported systems table with hostname entry and official name
1.08 (11/12/18) Added IR port assignment in /data/100 & 101 and added JSON to /irpass/ as body requirement
1.09 (30/01/19) Changed supported IR data formats, added data/203
1.10 (30/05/19) ARC, CEC APIs added
1.11 (18/07/19) Updated responses, added boolean type.

1.12 (24/02/20)
Updated data/100, data/200, data/200/x/, data/203, data/203/x/. Added data/204, control/fixaudio/ and
command/rs232pass

1 Version 1.12 24/02/2020

API​ Prologue

Protocol(s) REST/HTTP/OAuth 2.0

Output XML/JSON

API Language English (UK)

Current API Version 2.1 (Contact HDA for older versions)

MHUB-OS Version 8.20+

MHUB-OS FW Version 2.0+

Scope HDA Cloud (Internet) & MHUB (LAN)

Overview
The HDANYWHERE (HDA) API has been developed to encourage developers to write their
own applications for HDA systems. The API seeks to address the following objectives:

1. To reduce the amount of time required to write control and monitoring applications
2. To create a universal API spanning the entire HDA product range (see supported

device list)
3. To increase interoperability between HDA systems
4. To grant third-party developers access to advanced IO feature-set

2 Version 1.12 24/02/2020

API Changelog 1

API Prologue 2

Overview 2

API Basics 5

Built using REST 5
Common characteristics 5

HTTP verbs 5
Naming convention 6
Finding MHUB in your network 7
Supported Systems 8
API Security 9
Working with multiple MHUB systems 10

How MHUB Works 11

The basic principles of a matrix 11
Inputs and outputs 11
Infrared (IR) ports 12
Stacking MHUB 13
Inputs and outputs on hybrid systems 14
Zones 15
Control 16
Grouping 16

API Resources 17

API breakdown 17
API response format / request structure 18
Quick steps for Standalone connection to any MHUB system. 19
Critical 20

/api/reboot/1/
Full reboot / Power Cycle 20
/api/reboot/2/
Reboot MHUB-OS 20
/api/power/0/
Standby ON 21
/api/power/1/
Standby OFF (Turn On) 21
/api/identify/
Identify 22

Data 23
/api/data/0/
MHUB Power State 23
/api/data/100/
MHUB System Information: MHUB-OS Standalone 24
/api/data/101/
MHUB System Information: MHUB-OS Stacked Mode 26
/api/data/102/
MHUB Zones 27
/api/data/103/
MHUB Groups 28
/api/data/200/
MHUB Status - Single MHUB 29
/api/data/200/[zid]
MHUB Zone Status - Single MHUB 30
/api/data/201/
MHUB uControl Pack summary 31
/api/data/201/[x]
uControl 33
/api/data/202/
Sequences 34
/api/data/203/
MHUB Status - Stacked MHUB 35
/api/data/203/[zid]
MHUB Zone Status - Stacked MHUB 36

Operation 37
/api/control/switch/
Switching 37

3 Version 1.12 24/02/2020

/api/control/switch/zone/
Zone Switching (MHUB AUDIO only) 38
/api/control/audiomatch/
Source audio Extraction (MHUBPRO2 systems only) 39
/api/control/volume/
Set Output Volume 40
/api/control/volume/zone/
Set Zone Volume (MHUB AUDIO only) 41
/api/control/arc/
Audio Return Channel (ARC) 42
/api/control/mute/
Mute 43
/api/control/mute/zone/
Mute Zone (MHUB AUDIO only) 44
/api/control/group/create/
Creating a Group 45
/api/control/group/delete/
Deleting a Group 46
/api/control/group/[add/delete]/
Adding or removing a Zone from Group 47
/api/control/group/volume/set/
Changing the volume in a Group 48
/api/control/mutegroup/
Muting the audio in a Group 49
/api/control/sequence/
Execute Sequence 50

IO 51
/api/command/ir/
Execute uControl Command (IR) 51
/api/command/irpass/
IR Passthrough 52
/api/command/cec/
Execute uControl Command (CEC) 53
/api/command/cecpass/
CEC Passthrough 54
/api/command/rs232pass/
RS232 Passthrough 55

HDA Cloud References 56

Reference Material 57

DNS-SD responses 58
IR port mapping 59
API glossary 60
uControl command IDs 63

4 Version 1.12 24/02/2020

API ​Basics

Built using REST
The HDA API is built using REST principles and defines a set of functions which developers
can use to control MHUB (or any HDA device), access its IO, or report back data. This
interaction is performed via the HTTP protocol. Using HTTP and REST means that
applications can be made for using any programming language.

Common characteristics
● You access functions or resources by sending a HTTP request to the MHUB

API server. The server replies with a response that contains either the data
you requested, or the status indicator, or even both.

● All functions or resources are located from the base URL at
http://devicehost/api/

● Any call to the API server will return standard ​HTTP response codes​.

HTTP verbs
HTTP verbs are used to manage the state of resources, these are: GET and POST. PUT, and
DELETE are not supported.

5 Version 1.12 24/02/2020

http://mhubhost/api/
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Naming convention
All interaction between your application and a HDA device is conducted in ​lowercase ​.
Ensure that you do not confuse physical port labelling on the device which appears in
uppercase (A, B, C etc) with their programmatic addressable equivalents. For example, to
send an API command to MHUB PRO (8x8) output port ​labelled “F” ​ you would instruct your
application to replace the cap “F” with a lowercase “f”.

Type Standard (if applicable) Example

ID lowerCamelCase inputAudio1

Labels/Array names lowercase_seperated_with_underscore start_id
Boolean n/a boolean
MHUB inputs n/a 1,2,3,4...
MHUB outputs n/a a,b,c,d...
Arrays n/a bold

6 Version 1.12 24/02/2020

Finding MHUB in your network
MHUB systems use multicast DNS (mDNS) to identify themselves on a network to a client.
You can find the full mDNS protocol here​ ​RFC 6762​.

HDANYWHERE products are announced under 2 services. Depending on the year of release
it is either ”​_http._tcp” ​or “​_hda._tcp”. ​This is described in detail in the section ​Supported
MHUB systems​.

To find MHUB on the network you will need to use DNS Service Discovery (DNS-SD) as
supported by your operating system. The client will need to make a DNS-SD query to
(244.0.0.251) and await a response. HDA recommends that you use the appropriate API on
the client device to achieve this. For example, if you are using iOS then you can use the
Bonjour API library. If you are using Windows or Linux then the Avahi API is applicable.

Please refer to the Reference Material section for a full list of DNS-SD responses.

Example DNS-SD query / response

If you are searching for MHUB PRO (4x4) 70 (2016) and your MHUB is on the latest
version of MHUB-OS and Firmware then your response will match the following:

Hostname = [MHUB4K44PRO.local]

Address = [IP Address]

Port = [80]

Txt = [“MHUB PRO (4x4) 70”]

7 Version 1.12 24/02/2020

https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6762

Supported Systems

Official Name Service API Device Type Release SKU Hostname

MHUB U
MHUB (4x3+1) _http._tcp 2.0 Video Matrix 2018 1.05.904.012.1 MHUB431U
MHUB (8x6+2) _http._tcp 2.0 Video Matrix 2018 1.05.904.013.1 MHUB862U
MHUB U (4x1+1) _hda._tcp 2.1 Video Matrix 2020 1.05.904.023.1 MHUBU41140
MHUB U (4x3+1) _hda._tcp 2.1 Video Matrix 2019 1.05.904.012.2 MHUBU43140
MHUB U (8x6+2) _hda._tcp 2.1 Video Matrix 2019 1.05.904.013.2 MHUBU86240

MHUB PRO
MHUB PRO (4x4) 40 _http._tcp 2.0 Video Matrix 2017 1.05.904.014.1 MHUBPRO4440
MHUB PRO (4x4) 70 _http._tcp 2.0 Video Matrix 2016 1.05.904.008.2 MHUB4K44PRO
MHUB PRO (8x8) 40 _http._tcp 2.0 Video Matrix 2017 1.05.904.015.1 MHUBPRO8840
MHUB PRO (8x8) 70 _http._tcp 2.0 Video Matrix 2016 1.05.904.009.2 MHUB4K88PRO

MHUB PRO 2.0
MHUB PRO 2.0 (4x4) 40 _hda._tcp 2.1 Hybrid Matrix 2019 1.05.904.021.1 MHUBPRO24440
MHUB PRO 2.0 (8x8) 100 _hda._tcp 2.1 Hybrid Matrix 2019 1.05.904.022.1 MHUBPRO288100

MHUB MAX
MHUB MAX (4x4) _http._tcp 2.0 Video Matrix 2017 1.05.904.011.1 MHUBMAX44

MHUB AUDIO
MHUB AUDIO (6x4) _http._tcp 2.0 Audio Matrix 2018 1.05.912.001.1 MHUBAUDIO64

ZONE PROCESSOR
UCONTROL ZONE PROCESSOR 5 _hda._tcp 2.1 Control Processor 2020 1.80.904.002.1 ZP5
UCONTROL ZONE PROCESSOR 1 _hda._tcp 2.1 Control Processor 2020 1.80.904.001.1 ZP1

Table: Supported Systems

8 Version 1.12 24/02/2020

Working with multiple MHUB systems
MHUB systems can be stacked up to a maximum of 4 times. Stacks can be created using
only Audio Matrix devices (See Table: ​Supported MHUB Systems​) or a combination of Audio
Matrices and a single Video Matrix. Stacking of multiple Video Matrix systems is not
supported using method #3 below however it can be achieved if you opt to communicate
with MHUB using method #2.

1. Standalone

Your control application communicates directly with a single MHUB system.

2. Manual
Using the same principles as method #1 each MHUB is treated as a separate device.
Some MHUB features such as Sequences and uControl (which takes advantage of
both Video and Audio operations) will not work as inter-communication between
MHUB devices is not supported. With this method, your control application will need
to manage routing logic to ensure that video or audio or a combination of both is
kept in sync throughout the system.

3. MHUB-OS Stack
This method requires prior configuration using HDA’s uControl app before it can be
enabled. MHUB-OS Stack method will take I/O data from all MHUBs in the stacked
arrangement and report back to your application as a single large Audio Matrix or
Audio/Video Matrix system. In MHUB-OS Stack each MHUB will be assigned with a
rank (Master or Slave) and your application will communicate only with the Master
device. MHUB-OS will function as if it was one large Matrix meaning that uControl,
Sequences, Voice control, and HDA Cloud operations are supported throughout the
entire system scope.

9 Version 1.12 24/02/2020

How ​MHUB Works

The basic principles of a matrix
Video and Audio Matrices are capable of routing various types of digital or analogue AV
inputs (Apple TV, XBOX One, Sky, TiVo, SONOS etc) to any compatible output (like a TV,
projector or speaker) or to multiple outputs simultaneously. HDA is a manufacturer of these
devices which it calls MHUB.

Inputs and outputs
All MHUB systems share a common characteristic of having a collection of input ports
(referenced using numbers: 1, 2, 3, 4 etc) and a collection of output ports or end-points
(referenced using letters: A, B, C, D etc). To illustrate this; the MHUB PRO (4x4) has 4 inputs
and 4 outputs and the MHUB (8x6+2) has 8 inputs and 8 outputs in total “6+2”. Signals from
an Input can be routed to any Output or combination of Outputs and this switch and split
ability is what is defined as a matrix.

10 Version 1.12 24/02/2020

Infrared (IR) ports
MHUB systems with IR ports can be used to transmit IR commands by directly by sending
Pronto IR data to the addressable port ID on MHUB.

Important:
The ID format for IR ports do not follow the same assignment rules for video or audio
input/output ports. Instead, IR ports are all referenced using numbers which start from
number 1 and increment depending on the number of IR ports declared by MHUB.

MHUB will distinguish within the API whether a collection of IR ports are located on the main
chassis of MHUB (Backwards) or if they are found on one of its display receivers (Forwards).
If you are using a HDA Zone Processor then this will be identified as a (Remote) IR port.

For example, the MHUB PRO (4x4) in the diagram below has 4 input ports (referenced using
numbers: 1, 2, 3, 4 etc) and 4 output ports (referenced using letters: A, B, C, D etc). If you
wanted to send an IR command to the output port labelled “D” then you would send it to IR
Port ID = 8.

Additionally, AVR ports are declared as separate entities but follow the same numbering rule
as above. The AVR port ID will always be ++1 after the final forwards ID port. In the diagram
below you will see that the AVR port is marked ID = 9.

11 Version 1.12 24/02/2020

Stacking MHUB
It is possible to stack more than one MHUB system together. If you enable MHUB’s stacked
mode then MHUB-OS will calculate the total number of inputs and outputs and assign
addressable references to each of them. For example, if you stacked an MHUB PRO (4x4)
with an MHUB AUDIO (6x4) then you would be able to reference each port as one large
MHUB system as follows:

● Inputs = 10
MHUB PRO (​4​x​4​) - Referenced: (1,2,3,4)
MHUB AUDIO (​6​x​4​) - Referenced: (5,6,7,8,9,10)

● Outputs​ ​= 8
MHUB PRO (​4​x​4​) - Referenced: a,b,c,d
MHUB AUDIO (​6​x​4​) - Referenced: e,f,g,h

12 Version 1.12 24/02/2020

Inputs and outputs on hybrid systems
Hybrid MHUB systems like MHUB PRO 2.0 contain features like Audio Return Channel (ARC)
which allows a video output (video: picture + audio) to act as an audio input also. Referring
to physical port labelling on the device itself will not assist you in helping identify the port ID.

Instead, port assignment and function follows the same nomenclature and method outlined
in section “Stacking MHUB”. Consequently, there will be more IDs reported in API feedback
than there are physical ports on the device itself.

To illustrate this, in the diagram below, there is a MHUB PRO 2.0 (4x4) 40 system setup with
a zone called “Kitchen”. Inside that zone, there are outputs or end-points which remain
referenced with letters (B). Assigning output B to Kitchen will gain command over the display
and content routed to it. However, if that display is also ARC enabled, then MHUB can pull
the audio from the display. This is treated as an input, so is indexed by numbers and is
specifically referenced by ID (6). In this scenario it is possible to route, for example, a blu-ray
(input 1) to output B - this will show the blu-ray on the kitchen display. If that display is ARC
enabled then a further instruction can be sent to MHUB, this time to pull the audio as an
input into MHUB and routed to the kitchen speakers, output J. From a user point of view all
these instructions are happening in the kitchen (output B) but programmatically, each input
or output needs to be uniquely identifiable.

13 Version 1.12 24/02/2020

Zones
Zones are virtual constructs which define a physical space for MHUB end-points to
terminate.

A Zone can include a maximum of 1 video matrix output and a maximum of 4 audio matrix
outputs. For example, you can create a zone called “Kitchen” and assign 1 video and 1 audio
output to it. A Zone must contain at least 1 output from an MHUB for it to be addressable for
control. Note: outputs can not be shared or split to more than 1 Zone.

Zone quantity is defined by calculating the sum-total of all referenceable outputs on an
MHUB system, standalone or stacked. Using the MHUB PRO (4x4) and MHUB AUDIO (6x4)
example would indicate that that system can support a maximum of 8 zones.

14 Version 1.12 24/02/2020

Control
MHUB system control is achieved by giving your application a ​Zone focus.​ For most control
API commands you will need the end user to identify which Zone they want to control before
MHUB can respond correctly.

Grouping
Zones which contain outputs from MHUB AUDIO systems can be grouped together allowing
for audio adjustment over one or more Zones. Operations such as volume adjustment and
muting can be applied by sending a single group API rather than targeting individual Zones.

Groups can support a maximum of 4 Zones. Grouped volume is reported by taking the
average volume value in each Zone and adjusting this value will change the volume state
uniformly in each Zone. Using the example in ​Combining Zones to create a Group ​you can
see that Zones “Parents Room” and “Ensuite / Bathroom” are currently reporting volume
states of 55% and 25% respectively. MHUB will average this value and report to your
application that the Group volume is 40%. Adjusting the Group volume by incrementing the
value +10 will set the Group volume at 50% and the Zones “Parents Room” and “Ensuite /
Bathroom” become 65% and 35%.

If a Zone belongs to a Group it is still possible to change the individual Zone audio state. To
do this you would instruct your application to target the Zone directly via the appropriate API.

15 Version 1.12 24/02/2020

API ​Resources

API breakdown
Control and reporting functions can be arranged into the following categories:

● Critical
Universally supported control functions for HDA systems to perform basic critical
operations such as turning devices on/off or rebooting video/audio/OS processors.

● Data
A collection of resources designed to feedback the operational state of devices or to
obtain configurational data so that you may control it.

● Operation
General control functions and resources for everyday use and operation. These
include operations like switching inputs, adjusting volume or executing Sequences.

● IO
Use these resources to create advanced applications using device IO to control 3rd
party hardware are connected to a HDA system.

16 Version 1.12 24/02/2020

API response format / request structure
All functions or resources are located from the base URL at: ​http://devicehost/api/​. Every
API call will respond with a standardised header which details the current API version and
whether any error was logged during execution.

API response format

All APIs will ​always start​ with a header:

"header": {

 "version": "2.1"

}

Followed by:

"data": {

 [API RESPONSE]

}

Example - to query if MHUB is on or off:

Some attributes within this document are highlighted in ​bold. ​Their definitions can be
found in the Reference Material section at the end of this document. Data arrays are
indicated in ​bold. ​ ​Boolean responses are in​ Green.

{

 "header": {

 "version": "2.1"

 },

 "data": {

 "power": ​ ​true
 }

}

Example - Error response

{

 "header": {

 "version": "2.1"

 },

 "error": {

 "code": "1"

 }

}

17 Version 1.12 24/02/2020

http://mhubhost/api/

Quick steps for Standalone connection to any MHUB system.
The following example shows which API’s need to be called to configure a standalone
device. We are going to assume the first boot process has been completed. For this example
we will use a MHUB PRO 2.0 (4x4) 40.

● A DNS scan is run on the network. The following MHUB hardware is discovered:

○ Hostname = [MHUBPRO24440.local]

○ Address = [192.168.1.1]

○ Port = [80]

○ Txt = [“HDANYWHERE MHUB PRO 2.0 (4x4) 40”]

● Then request ​/api/data/100​.
When called this API will return basic system information regarding the MHUB and
will detail what input and output ports are available on the system along with their
respective port IDs and user defined labels. This response will also inform you if the
MHUB has been setup in a stack, or has an accessory device attached to it or is
operating in standalone mode.

● You now need to ascertain what port IDs appear where. To do this you need to
request ​/api/data/102
This API will respond with all outputs or inputs that terminate or start in a zone along
with a user defined zone label.

● Finally, to request the switch or operational state of the MHUB you would request
/api/data/200
This will provide state information for all zones so that your interface is populated
with up-to-date data.

Your application will now hold data for all input and output quantities, their addressable IDs,
where they terminate or start, their user defined labels and an up-to-date state value so that
your interface can be drawn accurately to represent what is going on inside MHUB.

18 Version 1.12 24/02/2020

Critical

/api/reboot/1/
Full reboot / Power Cycle

Performs a full reboot / power cycle of all hardware components within MHUB

This request has a fixed execution time of 30,000ms (30 seconds) to ensure that
communication with MHUB is available after reboot is complete. The reboot command
is processed as soon as it is received and 30 seconds later the system is automatically
brought back online.

GET​ request:

http://devicehost/api/reboot/1/

Response

"data": {

 "Description": "Performing full reboot."

 }

/api/reboot/2/
Reboot MHUB-OS

Performs a software reboot of MHUB-OS but maintaining video/audio function active

GET ​request:

http://devicehost/api/reboot/2/

Response

"data": {

 "Description": "Rebooting MOS."

 }

19 Version 1.12 24/02/2020

http://mhubhost/api/reboot/1/
http://mhubhost/api/reboot/2/

/api/power/0/
Standby ON

Put MHUB into a low power (standby) state - turn off

This command is not universally supported on every system. Please refer to the API
Appendix for system support.

GET ​request:

http://devicehost/api/power/0/

Response

"data": {

 "power": "Powering off MHUB."

 }

/api/power/1/
Standby OFF (Turn On)

Take MHUB out of its low power (standby) state - turn on

GET ​request:

http://devicehost/api/power/1/

Response

"data": {

 "power": "Powering on MHUB."

 }

20 Version 1.12 24/02/2020

http://mhubhost/api/power/0/
http://mhubhost/api/power/1/

/api/identify/
Identify

Sets Power/front panel LEDs flashing to devices can be identified.

MHUB AUDIO - HDANYWHERE and AUDIO logo flashing so MHUB can be identified
ZP5/ZP1 - Power LED flashes

GET ​request:

http://devicehost/api/identify/

Response

"data": {

 "identify": true

 }

21 Version 1.12 24/02/2020

http://mhubhost/api/power/1/

Data

/api/data/0/
MHUB Power State

Find out if MHUB is on or off

GET ​request:

http://devicehost/api/data/0/

True = MHUB is on
False = MHUB is off

Response

"data": {

 "Power": ​boolean
 }

22 Version 1.12 24/02/2020

http://mhubhost/api/data/0/

/api/data/100/
System Information: Standalone

Request input, output IDs and labels for all I/O ports in a standalone system

Returns basic system information including identifiable data, serial number, IO
connectivity, software versions and stack status.

GET ​request:

http://devicehost/api/data/100/

Response:

{

"data": {

"io_data": {

"input_video": ​video input​,
"output_video": ​video output​,
"output_video_mirror": ​video output mirror​,
"input_audio": ​ ​audio input​,
"output_audio": ​audio output​,
"output_audio_mirror": ​audio output mirror​},

"ir": {

"backwards": {

"draw": ​boolean​,
"start_id": " ​start id​",
"ports": ​ ​" ​ports​"},

"forwards": {

"draw": ​boolean​,
"start_id": " ​start id​",
"Ports": " ​ports​"},

"avr": {

"draw": ​ boolean​,
"start_id": " ​start id​",
"Ports": " ​ports​"}},

"cec": {

 "output": [{

 "type": " ​type​"
 "draw": ​boolean​,
 "start_id": " ​start id​",
 "ports": " ​ports​"

 },

 {

 "type": " ​type​"
 "draw": ​boolean​,
 "start_id": " ​start id​",
 "ports": " ​ports​"}],
 "input": {}

},

"rs232": {

 "output": [{

"type": " ​type​",
"draw": ​ boolean​,
"start_id": " ​start id​",

23 Version 1.12 24/02/2020

http://mhubhost/api/data/100/

"ports": " ​ports​"
},

{

"type": " ​type​",
"draw": ​boolean​,
"start_id": " ​start id​",
"ports": " ​ports​"
}]},

"mhub": {

"first_boot": ​boolean​,
"ip_address": " ​ip address​",
"mhub_firmware": ​mhub firmware​,

"mhub-os_firmware": ​mhub-os firmware​,
"mhub-os_version": ​ mhub-os version​,
"api": ​api​,
"mhub_official_name": " ​mhub official name​",
"unit_id": " ​unit id​",
"mhub_name": " ​mhub name​",
"serial_number": " ​serial number​"
},

"stack": {

"stack_status": ​boolean​,
"stack_rank": " ​stack rank​",
"stack_master": ​stack master

}

}}}}}

24 Version 1.12 24/02/2020

If /api/data/101/
System Information: Stacked Mode

Request input, output IDs and labels for all I/O ports in a stacked system

Pairs physical ports on MHUB systems running in stacked mode with their
virtual/addressable IDs. This API is only required when running MHUB in MHUB-OS
Stacked mode (see page 7).

GET ​request:

http://devicehost/api/data/101/

Response:

"data": {

"stacked_io": {

"stack_input_video": ​stack video input​,
"stack_output_video": ​stack video output​,
"stack_output_video_mirror": ​ stack video output mirror​,
"stack_input_audio": ​stack audio input​,
"stack_output_audio": ​stack audio output​,
"stack_output_audio_mirror": ​ stack audio output mirror

},

"mapping": {

"input": {

"unit_id": " ​unit id​",
"input_id": " ​input id​"

},

"output": {

"unit_id": " ​unit id​",
"output_id": " ​output id​"

},

"split_input": {

"inputs": [" ​zone id​", " ​zone id​"],
"type": "",

"shared": ""

},

"stack_unit_info": [{

"unit_id": " ​unit id​",
"mhub_name": " ​mhub name​",
"serial_number": " ​serial number​",
"ip_address": " ​ip address​",
"stack_rank": " ​stack rank​"

}]

}

}

25 Version 1.12 24/02/2020

http://mhubhost/api/data/101/

/api/data/102/
MHUB Zones

Request output and inputs assigned to zones

Returns information about which MHUB outputs or inputs, such as display ARC, are
assigned to each zone.

GET ​request:

http://devicehost/api/data/102/

Response:

{

"data": [{

"zone_id": " ​zone id​",
"zone_label": " ​zone label​",
"outputs": [{

"unit_id": " ​unit id​",
"output_id": " ​output id​"

 "arc_input”: " ​arc input id​"
}]

}

26 Version 1.12 24/02/2020

http://mhubhost/api/data/101/

/api/data/103/
MHUB Groups

Request group information

Returns information about which zones are assigned to each group, volume and mute
state.

GET ​request:

http://devicehost/api/data/103/

True = mute is on
False = mute is off

Response:

{ "groups": [{

"group_id": " ​group id​",
"group_label": " ​group label​",
"zones": [" ​zone id​", " ​zone id​"],
"group_volume": " ​mhub audio group volume​",
"group_mute": ​boolean

}]

}

27 Version 1.12 24/02/2020

http://mhubhost/api/data/101/

/api/data/200/
Status - Single system

Requests System state (standalone).

Request current routing, volume and audio states for all zones.
 ​(Please note that volume and mute information will relate to MHUB AUDIO levels only​)

GET ​request:

http://devicehost/api/data/200​/

True = mute is on
False = mute is off

Response:

{

"data": {

"zones": [{

"zone_id": " ​zone id​",
"state": [{

"output_id": ​"output id​",
"input_id": " ​input id​",
"disp_audio_id": " ​display audio input id​",
"volume": " ​zone audio volume​",
"mute": ​boolean​,
"arc": ​boolean​,
"display_power": ​ ​" ​display power​"

},

{

"output_id": " ​output id​",
"input_id": " ​input id​",
"disp_audio_id": " ​display audio input id​",
"volume": " ​zone audio volume​",
"mute": " ​boolean​",
"arc": ​boolean​,
"display_power": ​ ​" ​display power​"

 }],

 }]

}

}

28 Version 1.12 24/02/2020

http://mhubhost/api/data/200/

/api/data/200/[zid]
MHUB Zone Status - Single MHUB

Requests MHUB Zone state (standalone).

Request current routing information for all zones.
 ​(Please note that volume and mute information will relate to MHUB AUDIO levels only​)

GET ​request:

http://devicehost/api/data/200​/[zid]

True = mute is enabled
False = mute is disabled

Arguments:

[zid] = zone id (​z1, z2, z3…​)

Response:

"data": {

"zone": {

"zone_id": " ​zone id​",
"video_input": " ​input id​",
"audio_input": " ​audio input id​",
“disp_audio_id”: “display audio input id”

"volume": ​zone audio volume​,
"mute": ​boolean​,
"arc": ​boolean,
"display_power": ​ ​" ​display power​"

}}

29 Version 1.12 24/02/2020

http://mhubhost/api/data/200/

/api/data/201/
MHUB uControl Pack summary

MHUB ports with uControl Packs installed

Request which MHUB IO ports have uControl device control packs installed.

GET ​request:

http://devicehost/api/data/201/

True = IR pack installed
False = IR pack not installed

Response:

"data": {

"unit_id": "V1",

"input": [{

"id": "1",

"irpack": ​boolean
},

{

"id": "2",

"irpack": ​boolean
},

{

"id": "3",

"irpack": ​boolean
},

{

"id": "4",

"irpack": ​boolean
}],

"output": [{

"id": "a", ​boolean
},

{

"id": "b",

"irpack": ​boolean
},

{

"id": "c",

"irpack": ​boolean
},

{

"id": "d",

"irpack": ​boolean
}],

"avr": ​boolean
}

30 Version 1.12 24/02/2020

http://mhubhost/api/data/0/

/api/data/201/[x]
uControl

Request uControl button ID and labels

Returns extended information on a specified uControl device control pack.

GET ​request:

http://devicehost/api/data/201/[x]

Arguments:

[x] = IR port

Response:

"data": {

"name": " ​ucontrol pack name​",
"type": " ​ucontrol device type​",
"version": " ​ucontrol pack version​",
"irpack_id": " ​ucontrol pack id​",
"ucontrol_pack_method": " ​ucontrol pack method​",
"ir_pack": [{

"repeat": ​boolean​,
"command_id": " ​command id​",
"label": " ​label​"
 }

}]

}

31 Version 1.12 24/02/2020

http://mhubhost/api/data/201/

/api/data/202/
Sequences

Request Sequence data

Returns basic information on sequences currently stored in the MHUB.

GET ​request:

http://devicehost/api/data/202/

Response:

"data": {

"sequences": ​sequence data
}

32 Version 1.12 24/02/2020

http://mhubhost/api/data/202/

/api/data/203/
MHUB Status - Stacked MHUB

Requests MHUB state (stacked).

Request current routing information for all zones in a stacked MHUB setup.
 ​(Please note that volume and mute information will relate to MHUB AUDIO levels only​)

GET ​request:

http://devicehost/api/data/203/

True = mute is on
False = mute is off

Response:

{

"data": {

"zones": [{

"zone_id": " ​zone id​",
"state": [{

"output_id": " ​output id​",
"input_id": " ​input id​",
"volume": " ​zone audio volume​",
"mute": ​boolean​,
"arc": ​boolean​,
"display_power": ​ ​" ​display power​"

},

{

"output_id": " ​output id​",
"input_id": " ​input id​",
"volume": " ​zone audio volume​",
"mute": ​boolean​,
"arc": ​boolean
"display_power": ​ ​" ​display power​"

}],

}]

}

}

33 Version 1.12 24/02/2020

http://mhubhost/api/data/203/

/api/data/203/[zid]
MHUB Zone Status - Stacked MHUB

Requests MHUB Zone state (standalone).

Request current routing information for all zones.
 ​(Please note that volume and mute information will relate to MHUB AUDIO levels only​)

GET ​request:

http://devicehost/api/data/203/​[zid]

True = mute is on
False = mute is off

Arguments:

[zid] = zone id (​z1, z2, z3…​)

Response:

"data": {

"zone": {

"zone_id": " ​zone id​",
"video_input": " ​input id​",
"audio_input": " ​audio input id​",
"volume": ​zone audio volume​,
"mute": ​boolean​,
"arc": ​boolean​,
"display_power": ​ ​“display power”

}}

34 Version 1.12 24/02/2020

http://mhubhost/api/data/203/

Operation

/api/control/switch/
Switching

Perform source switch

Switch the input source for any output on MHUB.

GET​ request:

http://devicehost/api/control/switch/​[ox]/[iy]/

Arguments:
 [ox] = output (​a,b,c…..​)
 [iy] = input (​1,2,3…..​)

Response:

"data": {

"output_id": " ​output id​",
"input_id": ​input id

}

35 Version 1.12 24/02/2020

http://mhubhost/api/control/switch/

/api/control/switch/zone/
Zone Switching (MHUB AUDIO only)

Perform source switch (MHUB AUDIO only)

Switch the audio input source for any zone with MHUB AUDIO outputs. This is possible
with MHUB AUDIO only as that device supports the inclusion of multiple outputs in a
single zone.

GET​ request:

http://devicehost/api/control/switch/zone/​[zid]/[iy]/

Arguments:
 [zid] = zone id (​z1, z2, z3…..​)
 [iy] = input (​1,2,3…..​)

Response:

"data": {

"zone_id": " ​zone id​",
"input_id": ​input id

}

36 Version 1.12 24/02/2020

http://mhubhost/api/control/switch/

/api/control/fixaudio/
Source audio extraction

Disables audio matrixing and fixes source audio to predefined audio outputs

Pairs the source audio with the audio outputs. Source 1 output via Audio output A,
Source 2 output via Audio output B.

GET​ request:

http://devicehost/api/control/fixaudio/​[ax]/

Arguments:
 [ax] = true (​enable audiomatch​)
 false (​disable audiomatch​)

 Response:

"data": {

audiomatch": " ​true​" or ​“false”
}

37 Version 1.12 24/02/2020

http://mhubhost/api/control/fixaudio/

/api/control/volume/
Set Output Volume

Set volume

Change the volume for any given output on MHUB.

GET ​request:

http://devicehost/api/control/volume/[ox]/[vy]/

Arguments:

[ox] = output (​a,b,c…..​)
[iy] = volume (​1-100​)

Response:

"data": {

"output_id": " ​output id​",
"volume": " ​output audio volume​"

}

38 Version 1.12 24/02/2020

http://mhubhost/api/control/volume[id]/[ox]/[vy]/

/api/control/volume/zone/
Set Zone Volume (MHUB AUDIO only)

Set Zone Volume (AUDIO only)

Change the volume for any given zone with MHUB AUDIO outputs.

GET ​request:

http://devicehost/api/control/volume/zone/​[zid]/[x]

[zid] = zone (​z1, z2, z3 ….​)
[x] = Volume (​0-100​)

Response:

"data": {

"zone_id": " ​zone id​",
"volume": ​zone audio volume​,

}

39 Version 1.12 24/02/2020

http://mhubhost/api/data/101/

/api/control/arc/
Audio Return Channel (ARC)

Audio Return Channel (ARC)

ARC can only be routed to MHUB if the mode is enabled - before - the input is switched
to. This is to avoid the display’s internal speaker from delivering no audio when ARC is
not needed.

GET ​request:

http://devicehost/api/control/arc/[ox]/[ty]/[ax]/

True = ARC is enabled
False = ARC is disabled

Arguments:

[ox] = output ​(a,b,c​)
[ty] = type (0-HDMI, 1-HDBaseT)
[ax] = ARC state (​true=ARC On , false=ARC Off (audio)​)

Response:

"data": {

"output_id": " ​output id​"
"type": " ​type​",

"arc": ​boolean
}

40 Version 1.12 24/02/2020

http://mhubhost/api/control/mute/[id]/[ox]/[mx]/

/api/control/mute/
Mute

Mute

Mute the audio for any given output on MHUB.

GET ​request:

http://devicehost/api/control/mute/[ox]/[mx]/

True = mute is enabled
False = mute is disabled

Arguments:

[ox] = output ​(a,b,c…..​)

Response:

"data": {

"output_id": " ​output id​",
"mute": ​boolean

}

41 Version 1.12 24/02/2020

http://mhubhost/api/control/mute/[id]/[ox]/[mx]/

/api/control/mute/zone/
Mute Zone (MHUB AUDIO only)

Mute Zone (MHUB AUDIO only)

Mute the audio for any given zone with MHUB AUDIO outputs.

GET ​request:

http://devicehost/api/control/mute/zone/[zid]/[mx]/

True = mute is enabled
False = mute is disabled

Arguments:

[zid] = zone ​(z1, z2 ,z3…..​)

Response:

"data": {

"zone_id": " ​zone id​",
"mute": ​boolean

}

42 Version 1.12 24/02/2020

http://mhubhost/api/control/mute/[id]/[ox]/[mx]/

/api/control/group/create/
Creating a Group

Create a group

Group a maximum of four zones together for shared volume control.

GET ​request:

http://devicehost/api/control/group/create/[groupLabel]/

Arguments:

[groupLabel] = label for group (string)

Response:

"data": {

"group_created": {

"group_id": " ​group id​",
"label": " ​group label​"

}

}

43 Version 1.12 24/02/2020

http://mhubhost/api/control/group/create/[groupID]/

/api/control/group/delete/
Deleting a Group

Delete group

Delete the selected group and remove all assigned zones.

GET​ request:

http://devicehost/api/control/group/delete/[gid]/

Arguments:

[gid] = ID for group

Response:

"data": {

"group_deleted": {

"group_id": " ​group id​",
"label": " ​group label​"

}

}

44 Version 1.12 24/02/2020

http://mhubhost/api/control/switch/[id]/[ox]/[iy]/

/api/control/group/[add/delete]/
Adding or removing a Zone from Group

Add or remove zones from a group

Add or remove multiple zones to/from a group.

POST ​request:

http://devicehost/api/control/group/​[gid]/[op]

POST ​body example:

{

 ​"zones": [" ​zone id​", " ​zone id​"]
}

Arguments:

[gid] = ID for group
[op] = ‘add’ or ‘delete’

Response::

"data": {

"group": {

"group_id": " ​group id​",
"label": " ​group label​"

},

"zones": {

"added": {

"zone_id": " ​zone id​",
"label": " ​zone label​"

},

"removed": {

 "zone_id": " ​zone id​",
"label": " ​zone label​"

}

}

45 Version 1.12 24/02/2020

http://mhubhost/api/control/switch/[id]/[ox]/[iy]/

/api/control/group/volume/set/
Changing the volume in a Group

Adjust group audio volume

Changes the audio volume on MHUB AUDIO outputs within the group.

GET ​request:

http://devicehost/api/control/group/volume/set/​[gid]/[vs]/

Arguments:

[gid] = ID for group
[vs] = volume (​1-100​)

Response

"data": {

"group": {

"group_id": " ​group id​",
"label": " ​group label​"

},

"group_volume": " ​mhub audio group volume​"
}

46 Version 1.12 24/02/2020

http://mhubhost/api/control/group/volume/set/

/api/control/mutegroup/
Muting the audio in a Group

Changing the mute state in a group

Sets the mute state for MHUB AUDIO outputs within the group.

GET ​request:

http://devicehost/api/control/mutegroup/​[gid]/[ox]/

True = mute is enabled
False = mute is disabled

Arguments:

[gid] = ID for group
[ox] = mute state (​true=muted(no audio), false=unmuted(audio)​)

Response

"data": {

"group": {

"group_id": " ​group id​",
"label": " ​group label​"

},

"group_mute": ​boolean
}

47 Version 1.12 24/02/2020

http://mhubhost/api/control/mutegroup/

/api/control/sequence/
Execute Sequence

Executing a Sequence

GET​ request:

http://devicehost/api/control/sequence/​[sid]​/

Arguments:

[sid] = Sequence ID

Response

"data": {

"sequence_executed": {

"id": " ​sequence id​",
"label": " ​sequence label​"

}

}

48 Version 1.12 24/02/2020

http://mhubhost/api/control/sequence/[sequence%20name]/
http://mhubhost/api/control/sequence/[sequence%20name]/
http://mhubhost/api/control/sequence/[sequence%20name]/

IO

/api/command/ir/
Execute uControl Command (IR)

Executing a uControl command

Sends an IR command stored within the uControl device control pack.

GET​ request:

http://devicehost/api/command/ir/​[io]/[cy]

Arguments:

[io] = IR port ID (​1,2,3​)
[cy] = IR command ID

Response

"data": {

 "execute": true

 }

}

49 Version 1.12 24/02/2020

http://mhubhost/api/command/ir/

/api/command/irpass/
IR Passthrough

Send an IR hex code

Sends an IR Pronto hex string from the selected IR port.

You can find details on the Pronto IR protocol here
http://files.remotecentral.com/pronto/14-1/index.html
http://www.hifi-remote.com/wiki/index.php?title=Working_With_Pronto_Hex

POST​ request:

http://devicehost/api/command/irpass/​[io]/

POST ​body examples:

Data must be passed to MHUB using JSON. Pronto IR data included within the object
can be in any of the following formats below.

● 0000,006b… (4 digit comma separated)
● 0000 006b… (4 digit space separated)

{"irdata":"0000,0072,0000,0016,0062,0022,000f,0012,000f,0012,000f,0022,000f,0022,00

20,0012,000f,0012,000f,0012,000f,0012,000f,0012,0020,0021,0020,0011,000f,0012,000f,

0022,000f,0012,0020,0011,000f,0022,000f,0012,0020,0011,000f,0022,000f,0012,000f,119

2"}

Arguments:

[io] = IR port ID (​1,2,3​)

Response

"data": {

 "execute": true

 }

}

50 Version 1.12 24/02/2020

http://files.remotecentral.com/pronto/14-1/index.html
http://www.hifi-remote.com/wiki/index.php?title=Working_With_Pronto_Hex
http://mhubhost/api/command/irpass/

/api/command/cec/
Execute uControl Command (CEC)

Execute a CEC command from MHUB using HDA’s predefined uControl CEC library.

Consumer Electronics Control (CEC) is a feature of HDMI designed to allow
predefined/and or supported control commands to be delivered over a HDMI
connection via MHUB. This API works in a similar way to the uControl (IR) API, “Execute
uControl Command” where parameters command ID and target port is required to send
a command.

Note
CEC is not standardised across all manufacturers​. Whilst the protocol is implemented
in a standard way, implementation, naming and command support are not. The
uControl CEC library uses standard command definitions and HDANYWHERE can not
guarantee that any may work.

POST​ request:

http://devicehost/api/command/cec/​[io]/[ty]/[cy]/

Arguments:

[io] = Port ID (a,b,c)
[ty] = CEC command Type (0=HDMI output, 1=HDBT output)
[cy] = CEC command ID

Response

"data": {

 "execute": true

 }

}

51 Version 1.12 24/02/2020

http://mhubhost/api/command/irpass/

/api/command/cecpass/
CEC Passthrough

Pass any CEC command through MHUB

Send a custom CEC command for execution at display or source ends via MHUB. You
will need to have a good understanding of CEC syntax, addressing and device support
before using this API for best results.

You can create CEC commands here:
http://www.cec-o-matic.com/

POST​ request:

http://devicehost/api/command/cecpass/​[io]/[ty]/

POST ​body examples:

Data must be passed to MHUB using JSON and must appear in the following format:

● 10 00 EF (2 digit empty space “ “ separated)

The example below will instruct MHUB to request from a display indicated by [io] that it
switches to HDMI Input 1.

{

 "logicaladdress": "EF",

 "command": "82",

 "arguments": "10 00"

}

Arguments:

[io] = Port ID (​a,b,c​)
[ty] = CEC - Command Type (0=HDMI output, 1=HDBT output)
[cid] = CEC Logical Address (​1-15​)
[cec] = CEC Command
[arg] = CEC Arguments

Response

"data": {

 "execute": true

 }

}

52 Version 1.12 24/02/2020

http://www.cec-o-matic.com/
http://mhubhost/api/command/irpass/

/api/command/rs232config/
RS232 port configuration

Confiigure the RS232 port.

Configure the baud, data length and parity for each RS232 port

POST​ request:

http://devicehost/api/command/rs232config/​[pt]/
Arguments:

[pt] = port (1-8 on the mhub, 9-16 on the HDBT receivers, 17 all ports)

Data must be passed to MHUB using JSON and must appear in the following format:

● baud rate (​1​-115200, ​2​-57600, ​3​-56000,​ 4​-38400, ​5​-19200, ​6​-14400,​ 7​-9600,
8​-4800)

● data length (​1​-8, ​2​-7, ​3​-6, ​4​-5)
● parity (​1​-none, ​2​-odd, ​3​-even)

POST ​body example to set port to 115200, 8bit, no parity:

{"rs232config": {

"baud": " ​1​",
"data": " ​1​",
"parity": " ​1​"
}

}

Response

"data": {

 "baud": " ​115200​",
 "data": " ​8​",
 "parity": " ​none​"
 }

}

53 Version 1.12 24/02/2020

http://mhubhost/api/command/rs232config/

/api/command/rs232pass/
RS232 Passthrough

Pass any RS232 command through MHUB

Send a RS232 command for execution at display or source ends via MHUB.

Port settings are configured on the device.

POST​ request:

http://devicehost/api/command/rs232pass/​[io]/[ty]/

POST ​body examples:

Data must be passed to MHUB using JSON and must appear in the following format:

● ASCII Example - ​pwon!
● HEX Example - ​a55b0110ff

{"rs232data": "A5B50110FF"}

Arguments:

[io] = Port ID (​1,2,3..​)
[ty] = Type (​0=ASCII, 1=hexadecimal​)

Response

"data": {

 "execute": true

 }

}

54 Version 1.12 24/02/2020

http://mhubhost/api/command/irpass/

HDA Cloud ​References

Development of this feature set has been paused.

Do you have any features that you would like to see made accessible from the Internet? If so,
please email Stuart Knight (​s.knight@hdanywhere.com​) and tell us about it.

55 Version 1.12 24/02/2020

mailto:s.knight@hdanywhere.com

Reference ​Material

56 Version 1.12 24/02/2020

DNS-SD responses

Name Hostname Port Description

MHUB U
MHUB (4x3+1) MHUB431U.local 80 MHUB (4x3+1)
MHUB (8x6+2) MHUB862U.local 80 MHUB (8x6+2)
MHUB U (4x1+1) MHUBU41140.local 80 MHUB U (4x1+1)
MHUB U (4x3+1) MHUBU43140.local 80 MHUB U (4x3+1)
MHUB U (8x6+2) MHUBU86240.local 80 MHUB U (8x6+2)

MHUB PRO
MHUB PRO (4x4) 40 MHUBPRO4440.local 80 MHUB PRO (4x4) 40
MHUB PRO (4x4) 70 MHUB4K44PRO.local 80 MHUB PRO (4x4) 70
MHUB PRO (8x8) 40 MHUBPRO8840.local 80 MHUB PRO (8x8) 40
MHUB PRO (8x8) 70 MHUB4K88PRO.local 80 MHUB PRO (8x8) 70

MHUB PRO 2.0

MHUB PRO 2.0 (4x4) 40 MHUBPRO24440.local 80 MHUB PRO 2.0 (4x4) 40
MHUB PRO 2.0 (8x8) 100 MHUBPRO288100.local 80 MHUB PRO 2.0 (8x8) 100

MHUB MAX
MHUB MAX (4x4) MHUBMAX44.local 80 MHUB MAX (4x4)

MHUB AUDIO
MHUB AUDIO (6x4) MHUBAUDIO64.local 80 MHUB AUDIO (6x4)

ZONE PROCESSOR

UCONTROL ZONE PROCESSOR 5 ZP5.local 80 UCONTROL ZONE PROCESSOR 5

UCONTROL ZONE PROCESSOR 1 ZP1.local 80 UCONTROL ZONE PROCESSOR 1

Table: DNS-SD responses

57 Version 1.12 24/02/2020

IR port mapping

Name Source Display AVR Global SKU Code

MHUB (4x3+1) 4 (1-4) 3 (6-8) 9 - 1.05.904.012.1 MHUB431U
MHUB (8x6+2) 8 (1-8) 6 (11-16) 17 - 1.05.904.013.1 MHUB862U
MHUB U (4x1+1) 4 (1-4) 3 (5-7) - 2 (8-9) 1.05.904.023.1 MHUBU41140
MHUB U (4x3+1) 4 (1-4) 3 (6-8) 9 - 1.05.904.012.2 MHUBU43140
MHUB U (8x6+2) 8 (1-8) 6 (11-16) 17 - 1.05.904.013.2 MHUBU86240
MHUB PRO (4x4) 40 4 (1-4) 4 (5-8) 9 - 1.05.904.014.1 MHUBPRO4440
MHUB PRO (4x4) 70 4 (1-4) 4 (5-8) 9 - 1.05.904.008.2 MHUB4KPRO44
MHUB PRO (8x8) 40 8 (1-8) 8 (9-16) 17 - 1.05.904.015.1 MHUBPRO8840
MHUB PRO (8x8) 70 8 (1-8) 8 (9-16) 17 - 1.05.904.009.2 MHUB4KPRO88

MHUB PRO 2.0 (4x4) 40 4 (1-4) 4 (5-8) 9 - 1.05.904.021.1 MHUBPRO24440

MHUB PRO 2.0 (8x8) 100 8 (1-8) 8 (9-16) 17 - 1.05.904.022.1 MHUBPRO288100
MHUB MAX (4x4) - - - - 1.05.904.011.1 MHUBMAX44
MHUB AUDIO (6x4) - - - - 1.05.912.001.1 MHUBAUDIO64
UCONTROL ZONE PROCESSOR (5) - - - 5 (1-5) 1.80.904.002.1 ZP5
UCONTROL ZONE PROCESSOR (1) - - - 1 1.80.904.001.1 ZP1

Table: IR port mapping

58 Version 1.12 24/02/2020

API glossary
uControl uses button IDs for common remote control functions. The following table details
remote control buttons with corresponding uControl command IDs. These can be passed
into MHUB for execution.

Label Description Data Type

api Indicates API version Integer (8 bit)

arc input id If ARC is enabled it input id will be shown here Integer (8 bit)

audio input Data array detailing information relating to audio input

Array[id, type, unit id,
draw (Boolean), label,
label editable, start label,
start label prefix, start
label suffix, startid, ports]

audio input id MHUB-OS identifier for audio input(s) Integer (8 bit)

audio output Data array detailing information relating to audio output

Array[id, port pair, type,
unit id, draw (Boolean),
label, label editable, start
label prefix, start label
suffix, startid, ports]

audio output mirror Data array detailing information relating to audio output mirror

Array[id, port pair, type,
unit id, mirror, draw
(Boolean), label, label
editable, start label, start
label prefix, start label
suffix, startid, ports]

cec code CEC hex string String (32 characters)

command id Numerical code used to identify different control commands Integer (8 bit)

command type Indicates if command is sent to HDMI output ot HDBT String (32 characters)

display audio input id MHUB-OS identifier for audio input(s) which can be routed to displays via ARC Integer (8 bit)
display power Indicates the current power state of a display. will return true/false/unknown String (32 characters)

first boot Boolean value that shows if first boot has been completed Boolean (true/false)

group id MHUB-OS identifier for group(s) String (3 characters)
(g1,g2.....g10)

group label The user defined label for a collection of zones (e.g. Downstairs, Upstairs) String (32 characters)

id Array identifier used to separate input/output types String (32 characters)

input id MHUB-OS identifier for input(s) Integer (8 bit)

input label The user defined label for inputs (start points) onboard MHUB (e.g. Bluray, Denon AVR,
Sonos, Apple TV)

String (32 characters)

ip address MHUB-OS current IP address String (32 characters)

ir Data detailing information relating to the IR ports

backwards(draw, start id,
ports), forwards(draw,
start id, ports), avr(draw,
start id, ports)

ir port Identifier for Infrared (IR) port addressing (endpoints) Integer (8 bit)

label Text label used for control commands String (32 characters)

label editable Boolean value that shows if label is user modifiable Boolean (true/false)

mhub audio group
volume

Indicates an average volume level of MHUB AUDIO outputs (endpoints) combined in to a
group

Integer (8 bit)

mhub firmware Indicates MHUB firmware version Decimal (double)

mhub name The user defined name for MHUB (e.g. Joe's Mhub) String (32 characters)

59 Version 1.12 24/02/2020

mhub official name The official HDANYWHERE given name for MHUB String (32 characters)

mhub-os firmware Indicates MHUB-OS firmware version Decimal (double)

mhub-os version Indicates MHUB-OS version Decimal (double)

output audio volume Indicates output volume level Integer (8 bit)

output id MHUB-OS identifier for output(s) String (3 Characters)
(a,b,c...)

output label The user defined label for outputs (endpoints) onboard MHUB (e.g. LG, KEF Soundbar,
Sony Projector)

String (32 characters)

ports The number of IR ports in each group Integer (8 bit)

power Indicates if the MHUB device is in an operational (on or off) state. This feature is not
supported across all MHUB devices. Please contact HDANYWHERE for further information.

Boolean (true=ON,
false=OFF)

sequence data Data array detailing user defined Sequences including button labels, voice utterance
triggers and sequence descriptions

array [sequence id,
sequence name,
sequence description,
sequence voice label]

serial number The official HDANYWHERE serial number for MHUB String (32 characters)

stack audio input Data array detailing information relating to video inputs in a stack.
Array[total stack audio
input, id, unit id, type,
draw, start id, labels]

stack audio output Data array detailing information relating to video inputs in a stack.
Array[total stack audio
output, id, unit id, type,
draw, start id, labels]

stack audio output
mirror

Data array detailing information relating to video inputs in a stack.

Array[total stack audio
output mirror, id, unit id,
type, mirror, draw, start
id, labels]

stack input video Data array detailing information relating to video inputs in a stack.
Array[total stack video
input, id, unit id, type,
draw, start id, labels]

stack master Indicates which MHUB device is designated as Master within a stacked system
arrangement

mhub name, serial
number, ip address

stack rank Indicates MHUB-OS's understanding of stack hierarchy for each device connected to
MHUB in a stacked system arrangement

Master, Slave, Control
Device, Accessory

stack video output Data array detailing information relating to video outputs in a stack.
Array[total stack video
output, id, unit id, type,
draw, start id, labels]

stack video output
mirror

Data array detailing information relating to video outputs in a stack.

Array[total stack video
output mirror, id, unit id,
type, mirror, draw, start
id, labels]

start id First identifier for Infrared (IR) port addressing (endpoints) on group Integer (8 bit)

start label User visible port id String (32 characters)

type Describes type of port String (32 characters)

total stack zone qty The sum of [total stack video output] + [total stack audio output] provides the maximum
addressable number of zones which a stacked MHUB system will support

Integer (8 bit)

ucontrol device type Indicates what device category is within given uControl Pack String (32 characters)

ucontrol pack command Data array detailing supported remote control functions, their MHUB-OS identifiers and
labels

Array [code id, code
label, repeat (Boolean)]

ucontrol pack draw Data array detailing default HDANYWHERE button location and placement Array [ui type, device
size, code id, location]

ucontrol pack id MHUB-OS identifier for uControl Pack(s) Integer (16 bit)
ucontrol pack method Indicates what control protocol is used within given uControl Pack String (32 characters)

60 Version 1.12 24/02/2020

(CEC, IR, IP)

ucontrol pack name The official HDANYWHERE given name for uControl Pack String (32 characters)
ucontrol pack version Indicates uControl Pack version Integer (8 bit)

unit id MHUB-OS identifier for MHUB systems in a standalone or stacked arrangement

Standalone Video "V1",
Standalone Audio "A1",
Stacked Master "M1",
Slave MHUB Devices
"S1"

video input Data array detailing information relating to video input

Array[id, type, unit id,
draw, label, label
editable, start label, start
label prefix, start label
suffix, startid, ports,
labels]

video output Data array detailing information relating to video output

Array[id, type, unit id,
draw (Boolean), label,
label editable, start label,
start label prefix, start
label suffix, startid, ports]

video output mirror Data array detailing information relating to video output mirror

Array[id, type, unit id,
mirror, draw (Boolean),
label, label editable, start
label, start label prefix,
start label suffix, startid,
ports]

zone audio volume Indicates the volume level of a zone Integer (8 bit)

zone id MHUB-OS identifier for zone(s) String (3 Characters) (z1,
z2,...z99)

zone label The user defined label for addressable areas which includes one or more endpoints (e.g.
Kitchen, Bedroom, Bar Area) String (32 characters)

61 Version 1.12 24/02/2020

uControl command IDs
uControl uses button IDs for common remote control functions. The following table details
remote control buttons with corresponding uControl command IDs. These can be passed in
to MHUB for execution in section “MHUB IO”.

ID Command IR CEC

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 Channel Up

11 Channel Down

12 Play

13 Pause

14 Play / Pause (Toggle)

15 Stop

16 Forward

17 Skip Forward

18 Rewind

19 Skip Backward

20 Record

21 Up

22 Down

23 Left

24 Right

25 Select / Enter / OK

26 Back / Return / Cancel

27 Menu

28 Home

29 TV Guide

30 Red

62 Version 1.12 24/02/2020

31 Green

32 Yellow

33 Blue

34 Volume Up

35 Volume Down

36 Mute (Toggle)

37 Info

38 Power (Toggle)

39 Power Off (Explicit)

40 Subtitles

41 Source

42 Eject

43 Audio

44 3D

45 Top Menu

46 Pop-up Menu

47 Aspect Ratio

48 Help

49 Power On (Explicit)

50 No / Thumbs Down

51 Yes / Thumbs Up

52 Page Up

53 Page Down

54 Search

55 Exit

56 Catch Up

57 Playlist

58 Box Office

59 DSTV

63 Version 1.12 24/02/2020

